相較于原核表達(dá)體系,真核體外蛋白表達(dá)的he xin優(yōu)勢(shì)在于具備部分翻譯后修飾能力,但 關(guān)鍵修飾途徑仍存在明顯局限。在缺乏內(nèi)質(zhì)網(wǎng)-高爾基體轉(zhuǎn)運(yùn)機(jī)制的情況下,糖基化修飾通常終止于高甘露糖型(Man?GlcNAc?)階段,無(wú)法合成復(fù)雜雙觸角唾液酸化糖鏈。這一缺陷直接影響zhi liao性抗體的抗體依賴性細(xì)胞介導(dǎo)的細(xì)胞毒性(ADCC)效應(yīng)。同時(shí),裂解物中二硫鍵異構(gòu)酶(PDI)與分子伴侶(如BiP)的活性不足,導(dǎo)致含多對(duì)二硫鍵的蛋白錯(cuò)誤折疊率升高40%-60%。為克服此瓶頸,需在裂解物中外源性添加重組糖基轉(zhuǎn)移酶復(fù)合體(如GnT-I/GnT-II/FUT8)以重構(gòu)修飾途徑,并通過(guò)優(yōu)化氧化還原電勢(shì)(Eh=-230 mV至-280 mV)改善二硫鍵形成效率。體外蛋白表達(dá)的這些修飾缺陷是目前制約其應(yīng)用于功能性糖蛋白生產(chǎn)的主要因素。通過(guò)灌流式反應(yīng)器將CHO細(xì)胞體外蛋白表達(dá)??周期縮短至72小時(shí),單批次產(chǎn)量突破5g/L。多次跨膜蛋白表達(dá)難點(diǎn)
傳統(tǒng)微生物發(fā)酵生產(chǎn)工業(yè)酶面臨周期長(zhǎng)(>72 小時(shí))且純化復(fù)雜的瓶頸。新一代連續(xù)流體外蛋白表達(dá)系統(tǒng) 通過(guò)耦合反應(yīng)器實(shí)現(xiàn)高效合成:將大腸桿菌裂解物與纖維素酶基因模板泵入螺旋管,在 30℃ 恒溫條件下持續(xù)產(chǎn)出酶蛋白,每小時(shí)產(chǎn)量達(dá) 120 mg/L,較批次反應(yīng)提高 8 倍。德國(guó) BRAIN AG 公司利用此技術(shù)生產(chǎn) 耐熱木聚糖酶,直接添加至造紙漿料中降解半纖維素,使漂白劑用量減少 30%。該系統(tǒng)還支持 實(shí)時(shí)補(bǔ)料——補(bǔ)充消耗的氨基酸和能量物質(zhì)可維持 48 小時(shí)穩(wěn)定表達(dá),單位酶成本降至 $2.5/g,逼近發(fā)酵法經(jīng)濟(jì)閾值。大分子蛋白表達(dá)公司芯片級(jí)體外蛋白表達(dá)??體現(xiàn)較前沿的進(jìn)展。
中國(guó)在合成生物學(xué)領(lǐng)域的政策布局更側(cè)重細(xì)胞工廠(如微生物發(fā)酵),對(duì)無(wú)細(xì)胞蛋白表達(dá)技術(shù)這類技術(shù)的專項(xiàng)扶持較少。盡管《“十四五”生物經(jīng)濟(jì)發(fā)展規(guī)劃》提及無(wú)細(xì)胞合成,但配套資金和產(chǎn)業(yè)政策尚未細(xì)化,難以吸引資本大規(guī)模投入。此外,無(wú)細(xì)胞蛋白表達(dá)技術(shù)涉及多學(xué)科交叉(合成生物學(xué)、微流控、AI建模),國(guó)內(nèi)既懂技術(shù)又懂產(chǎn)業(yè)化的復(fù)合型人才稀缺。反觀美國(guó),DARPA等機(jī)構(gòu)通過(guò)“BioMADE”計(jì)劃資助無(wú)細(xì)胞蛋白表達(dá)技術(shù)的jun shi和民用轉(zhuǎn)化,而中國(guó)在類似頂層設(shè)計(jì)上的滯后,進(jìn)一步拉大了與國(guó)際前沿水平的差距。
在中國(guó),無(wú)細(xì)胞蛋白表達(dá)技術(shù)(CFPS)的推廣面臨he xin原料依賴進(jìn)口的挑戰(zhàn)。商業(yè)化裂解物、高效能量再生系統(tǒng)等關(guān)鍵試劑仍以Thermo Fisher、Merck等國(guó)際品牌為主,國(guó)產(chǎn)替代品在活性和穩(wěn)定性上存在差距,導(dǎo)致成本居高不下。此外,無(wú)細(xì)胞蛋白表達(dá)技術(shù)工藝的規(guī)?;糯蠹夹g(shù)尚未成熟,反應(yīng)體系均一性、產(chǎn)物收率等問(wèn)題限制了其在GMP生產(chǎn)中的應(yīng)用。盡管國(guó)內(nèi)科研機(jī)構(gòu)(如中科院、清華大學(xué))在基礎(chǔ)研究上取得突破,但產(chǎn)學(xué)研轉(zhuǎn)化效率較低,缺乏類似Synthelis的專注無(wú)細(xì)胞蛋白表達(dá)技術(shù)的本土企業(yè),難以形成完整的產(chǎn)業(yè)鏈條。體外蛋白表達(dá)技術(shù)使??致死性靶點(diǎn)研究成為可能??,為新藥開發(fā)提供關(guān)鍵依據(jù)。
20世紀(jì)90年代后,隨著分子生物學(xué)和合成生物學(xué)的進(jìn)步,無(wú)細(xì)胞蛋白表達(dá)技術(shù)技術(shù)迎來(lái)突破。研究者通過(guò)優(yōu)化裂解物制備(如敲除大腸桿菌核酸酶)、開發(fā)能量再生系統(tǒng)(如Phosphoenolpyruvic acid,PEP循環(huán)),明顯提升蛋白產(chǎn)量和反應(yīng)時(shí)長(zhǎng)。2000年代初,連續(xù)交換式反應(yīng)體系(CECF)的出現(xiàn)解決了底物耗盡問(wèn)題,使反應(yīng)時(shí)間延長(zhǎng)至24小時(shí)以上,產(chǎn)量達(dá)毫克級(jí),為工業(yè)化鋪平道路。此階段,無(wú)細(xì)胞蛋白表達(dá)技術(shù)開始應(yīng)用于毒性蛋白合成和抗體片段生產(chǎn),但成本仍較高。在冰上預(yù)混裂解物與能量混合物,是保證??體外蛋白表達(dá)??重復(fù)性的關(guān)鍵步驟。常用蛋白表達(dá)定位
通過(guò)??優(yōu)化蛋白表達(dá)條件??,我們獲得了更高產(chǎn)量的酶。多次跨膜蛋白表達(dá)難點(diǎn)
無(wú)細(xì)胞蛋白表達(dá)技術(shù)(CFPS)的雛形可追溯至20世紀(jì)50年代。1958年,Zamecnik頭次證明細(xì)胞裂解物中的翻譯機(jī)器可在體外合成蛋白質(zhì),為技術(shù)奠定基礎(chǔ)。1961年,Nirenberg和Matthaei利用大腸桿菌裂解物破譯遺傳密碼子,推動(dòng)了分子生物學(xué)的發(fā)展。然而,早期技術(shù)因表達(dá)量低、穩(wěn)定性差,長(zhǎng)期局限于實(shí)驗(yàn)室研究,主要用于密碼子解析和翻譯機(jī)制探索,未實(shí)現(xiàn)規(guī)模化應(yīng)用。近十年,無(wú)細(xì)胞蛋白表達(dá)技術(shù)技術(shù)加速向醫(yī)療、合成生物學(xué)等領(lǐng)域滲透。例如,在COVID-19期間,該技術(shù)被用于快速生產(chǎn)疫苗抗原和抗體。同時(shí),AI算法的引入實(shí)現(xiàn)了反應(yīng)條件智能預(yù)測(cè),進(jìn)一步優(yōu)化表達(dá)效率。中國(guó)企業(yè)如蘇州珀羅汀生物通過(guò)自主研發(fā)試劑盒,推動(dòng)國(guó)產(chǎn)化替代。未來(lái),無(wú)細(xì)胞蛋白表達(dá)技術(shù)或與代謝工程、微流控技術(shù)結(jié)合,成為生物制造和準(zhǔn)確醫(yī)療的he xin工具。多次跨膜蛋白表達(dá)難點(diǎn)