微光顯微鏡(EMMI)無法探測到亮點的情況:
一、不會產(chǎn)生亮點的故障有歐姆接觸(OhmicContact)金屬互聯(lián)短路(MetalInterconnectShort)表面反型層(SurfaceInversionLayer)硅導電通路(SiliconConductingPath)等。
二、亮點被遮蔽的情況有掩埋結(BuriedJunctions)及金屬下方的漏電點(LeakageSitesunderMetal)。此類情況可采用背面觀測模式(backsidemode),但該模式*能探測近紅外波段的發(fā)光,且需對樣品進行減薄及拋光處理等。 我司團隊改進算法等技術,整合出 EMMI 芯片漏電定位系統(tǒng),價低且數(shù)據(jù)整理準、操作便,性價比高,居行業(yè)先頭。制冷微光顯微鏡與光學顯微鏡對比
我司專注于微弱信號處理技術的深度開發(fā)與場景化應用,憑借深厚的技術積累,已成功推出多系列失效分析檢測設備及智能化解決方案。更懂本土半導體產(chǎn)業(yè)的需求,軟件界面貼合工程師操作習慣,無需額外適配成本即可快速融入產(chǎn)線流程。
性價比優(yōu)勢直擊痛點:相比進口設備,采購成本降低 30% 以上,且本土化售后團隊實現(xiàn) 24 小時響應、48 小時現(xiàn)場維護,備件供應周期縮短至 1 周內(nèi),徹底擺脫進口設備 “維護慢、成本高” 的困境。用國產(chǎn)微光顯微鏡,為芯片質(zhì)量把關,讓失效分析更高效、更經(jīng)濟、更可控! 制造微光顯微鏡24小時服務我司自主研發(fā)的桌面級設備其緊湊的機身設計,可節(jié)省實驗室空間,適合在小型研發(fā)機構或生產(chǎn)線上靈活部署。
InGaAs微光顯微鏡與傳統(tǒng)微光顯微鏡在原理和功能上具有相似之處,均依賴于電子-空穴對復合產(chǎn)生的光子及熱載流子作為探測信號源。然而,InGaAs微光顯微鏡相較于傳統(tǒng)微光顯微鏡,呈現(xiàn)出更高的探測靈敏度,并且其探測波長范圍擴展至900nm至1700nm,而傳統(tǒng)微光顯微鏡的探測波長范圍限于350nm至1100nm。這一特性使得InGaAs微光顯微鏡具備更更好的波長檢測能力,從而拓寬了其應用領域。進一步而言,InGaAs微光顯微鏡的這一優(yōu)勢使其在多個科研與工業(yè)領域展現(xiàn)出獨特價值。在半導體材料研究中,InGaAs微光顯微鏡能夠探測到更長的波長,這對于分析材料的缺陷、雜質(zhì)以及能帶結構等方面具有重要意義。
柵氧化層缺陷顯微鏡發(fā)光技術定位的失效問題中,薄氧化層擊穿現(xiàn)象尤為關鍵。然而,當多晶硅與阱的摻雜類型一致時,擊穿并不必然伴隨著空間電荷區(qū)的形成。關于其發(fā)光機制的解釋如下:當電流密度達到足夠高的水平時,會在失效區(qū)域產(chǎn)生的電壓降。該電壓降進而引起顯微鏡光譜區(qū)內(nèi)的場加速載流子散射發(fā)光現(xiàn)象。值得注意的是,部分發(fā)光點表現(xiàn)出不穩(wěn)定性,會在一段時間后消失。這一現(xiàn)象可歸因于局部電流密度的升高導致?lián)舸﹨^(qū)域熔化,進而擴大了擊穿區(qū)域,使得電流密度降低。國外微光顯微鏡價格高昂,常達上千萬元,我司國產(chǎn)設備工藝完備,技術成熟,平替性價比高。
定位短路故障點短路是造成芯片失效的關鍵誘因之一。
當芯片內(nèi)部電路發(fā)生短路時,短路區(qū)域會形成異常電流通路,引發(fā)局部溫度驟升,并伴隨特定波長的光發(fā)射現(xiàn)象。EMMI(微光顯微鏡)憑借其超高靈敏度,能夠捕捉這些由短路產(chǎn)生的微弱光信號,再通過對光信號的強度分布、空間位置等特征進行綜合分析,可實現(xiàn)對短路故障點的精確定位。
以一款高性能微處理器芯片為例,其在測試中出現(xiàn)不明原因的功耗激增問題,技術人員初步判斷為內(nèi)部電路存在短路隱患。通過EMMI對芯片進行全域掃描檢測,在極短時間內(nèi)便在芯片的某一特定功能模塊區(qū)域發(fā)現(xiàn)了光發(fā)射信號。結合該芯片的電路設計圖紙和版圖信息進行深入分析,終鎖定故障點為兩條相鄰的鋁金屬布線之間因絕緣層破損而發(fā)生的短路。這一定位為后續(xù)的故障修復和工藝改進提供了直接依據(jù)。 我司自研含微光顯微鏡等設備,獲多所高校、科研院所及企業(yè)認可使用,性能佳,廣受贊譽。檢測用微光顯微鏡運動
其內(nèi)置的圖像分析軟件,可測量亮點尺寸與亮度,為量化評估缺陷嚴重程度提供數(shù)據(jù)。制冷微光顯微鏡與光學顯微鏡對比
EMMI的本質(zhì)只是一臺光譜范圍廣,光子靈敏度高的顯微鏡。
但是為什么EMMI能夠應用于IC的失效分析呢?
原因就在于集成電路在通電后會出現(xiàn)三種情況:1.載流子復合;2.熱載流子;3.絕緣層漏電。當這三種情況發(fā)生時集成電路上就會產(chǎn)生微弱的熒光,這時EMMI就能捕獲這些微弱熒光,這就給了EMMI一個應用的機會而在IC的失效分析中,我們給予失效點一個偏壓產(chǎn)生熒光,然后EMMI捕獲電流中產(chǎn)生的微弱熒光。原理上,不管IC是否存在缺陷,只要滿足其機理在EMMI下都能觀測到熒光 制冷微光顯微鏡與光學顯微鏡對比