音響GS認(rèn)證-咨詢熱線:4008-3008-95
兒童玩具GS認(rèn)證-咨詢熱線:4008-3008-95
吸塵器GS認(rèn)證-咨詢熱線:4008-3008-95
燈串CE認(rèn)證-咨詢熱線:4008-3008-95
LED燈具FCC認(rèn)證-可咨詢深圳阿爾法商品檢驗(yàn)
LED燈具FCC認(rèn)證-咨詢熱線4008-3008-95
電水壺CE認(rèn)證-可咨詢深圳阿爾法商品檢驗(yàn)
鼠標(biāo)CE認(rèn)證-可咨詢深圳阿爾法商品檢驗(yàn)
無線鍵盤FCC認(rèn)證-可咨詢深圳阿爾法商品檢驗(yàn)
電風(fēng)扇CE認(rèn)證-咨詢熱線:4008-3008-95
2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學(xué)顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠(yuǎn)程聚焦技術(shù)或電調(diào)諧透鏡(ETL)已經(jīng)實(shí)現(xiàn)了快速軸向掃描。但遠(yuǎn)程對焦時對反射鏡的機(jī)械驅(qū)動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進(jìn)行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學(xué)設(shè)計(jì),可以將橫向掃描轉(zhuǎn)換為無球面像差的軸向掃描,以實(shí)現(xiàn)高分辨率成像。有兩種方法可以實(shí)現(xiàn)這種設(shè)計(jì)。***個可以執(zhí)行離散的軸向掃描,另一個可以執(zhí)行連續(xù)的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠(yuǎn)鏡和物鏡。遠(yuǎn)程聚焦臂由振鏡掃描鏡(GSM)和空氣物鏡(OBJ1)組成,另一個臂(稱為照明臂)由浸沒物鏡(OBJ2)組成。兩個臂對齊,使得GSM與兩個物鏡的后焦平面共軛。準(zhǔn)直后的激光束經(jīng)偏振分束器反射進(jìn)入遠(yuǎn)程聚焦臂,由GSM進(jìn)行掃描,使OBJ1產(chǎn)生的激光焦點(diǎn)可以進(jìn)行水平掃描。從產(chǎn)品類型及技術(shù)方面來看,正置顯微鏡占據(jù)絕大多數(shù)市場。在體多光子顯微鏡層析成像
單光子激發(fā)熒光和雙光子激發(fā)熒光,是從熒光產(chǎn)生的機(jī)理上來區(qū)分的。而共焦則是熒光顯微鏡的一種結(jié)構(gòu),其目的是為了,通過共焦結(jié)構(gòu),提高整個熒光顯微鏡的空間分辨率。所以共焦熒光顯微鏡可以根據(jù)激發(fā)光源的不同,實(shí)現(xiàn)單光子共焦熒光成像或者雙光子共焦熒光成像。往往一個普通的雙光子熒光顯微鏡(沒有共焦結(jié)構(gòu))其空間分辨率也可以達(dá)到單光子共焦熒光顯微鏡的水平。這樣就可以簡化整個系統(tǒng),相對來說,就提高了激發(fā)光源的利用率,以及熒光的探測效率,這個也是我們提倡雙光子熒光成像的原因之一。雙光子熒光共焦顯微鏡由于雙光子效應(yīng)和共焦結(jié)構(gòu),分辨率則會更高,而我們通常說的共焦顯微鏡都是指單光子激發(fā)熒光的。在體多光子顯微鏡層析成像多光子顯微鏡將生物打印結(jié)構(gòu)準(zhǔn)確定位和定向到特定的解剖部位,使其能夠在小鼠組織內(nèi)制造復(fù)雜結(jié)構(gòu)。
對于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個比較大的深度限制因素,而對于三光子成像這兩個問題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經(jīng)元活動;需要更高的脈沖能量,以便在每個像素停留時間內(nèi)收集足夠的信號。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動與行為聯(lián)系起來,需要同時監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動,大腦中的神經(jīng)網(wǎng)絡(luò)會在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元動力學(xué),就需要MPM具備對神經(jīng)元進(jìn)行快速成像的能力??焖費(fèi)PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。
Ca2+是重要的第二信使,對于調(diào)節(jié)細(xì)胞的生理反應(yīng)具有重要的作用,開發(fā)和利用雙光子熒光顯微成像技術(shù)對Ca2+熒光信號進(jìn)行觀測,可以從某些方面對有機(jī)體或細(xì)胞的變化機(jī)制進(jìn)行分析,具有重要的意義。利用雙光子熒光顯微成像技術(shù)可以觀察細(xì)胞內(nèi)用熒光探針標(biāo)記的Ca2*的時間和空間的熒光圖像的變化,還可以觀察細(xì)胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對單細(xì)胞的研究發(fā)現(xiàn),Ca2+不僅在細(xì)胞局部區(qū)域間的分布是不均勻的,而且細(xì)胞內(nèi)各局部區(qū)域的不同深度或?qū)哟伍g也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。多光子顯微鏡的成熟的深部組織成像技術(shù)中。還有其他類型的圖像對比提供有關(guān)樣本的有價值信息。
快速光柵掃描有多種實(shí)現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動透鏡由于機(jī)械慣性的限制在軸向無法快速進(jìn)行焦點(diǎn)切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實(shí)現(xiàn)3D成像的手段。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實(shí)現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計(jì)來擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動透鏡。多光子共聚焦掃描顯微鏡比雙光子共聚焦掃描顯微鏡具有更高的空間分辨率。美國模塊化多光子顯微鏡Ultima Investigator
多光子激光掃描顯微鏡是建立在激光掃描顯微鏡技術(shù)基礎(chǔ)上的實(shí)驗(yàn)方法,三維觀察上提供更的光學(xué)切片能力。在體多光子顯微鏡層析成像
有許多方法可以實(shí)現(xiàn)快速光柵掃描,例如使用振鏡進(jìn)行快速2D掃描,以及將振鏡與可調(diào)電動透鏡相結(jié)合進(jìn)行快速3D掃描。而可調(diào)電動式鏡頭由于機(jī)械慣性的限制,無法在軸向快速切換焦點(diǎn),影響成像速度?,F(xiàn)在它可以被空間光調(diào)制器(SLM)取代。遠(yuǎn)程對焦也是實(shí)現(xiàn)3D成像的一種手段,如圖2所示。LSU模塊中,掃描振鏡水平掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)整M的位置實(shí)現(xiàn)軸向掃描該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速軸向掃描。為了獲得更多的神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計(jì)來放大FOV。然而,大NA和大FOV的物鏡通常很重,不能快速移動以進(jìn)行快速軸向掃描,因此大FOV系統(tǒng)依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動透鏡。在體多光子顯微鏡層析成像