鎖相熱成像系統(tǒng)在發(fā)展過程中也面臨著一些技術(shù)難點(diǎn),其中如何優(yōu)化熱激勵(lì)方式與信號處理算法是問題。熱激勵(lì)方式的合理性直接影響檢測的靈敏度和準(zhǔn)確性,不同的被測物體需要不同的激勵(lì)參數(shù);而信號處理算法則決定了能否從復(fù)雜的信號中有效提取出有用信息。為此,研究人員不斷進(jìn)行探索和創(chuàng)新,通過改進(jìn)光源調(diào)制頻率,使其更適應(yīng)不同檢測場景,開發(fā)多頻融合算法,提高信號處理的效率和精度等方式,持續(xù)提升系統(tǒng)的檢測速度與缺陷識別精度。未來,隨著新型材料的研發(fā)和傳感器技術(shù)的不斷進(jìn)步,鎖相熱成像系統(tǒng)的性能將進(jìn)一步提升,其應(yīng)用領(lǐng)域也將得到的拓展,為更多行業(yè)帶來技術(shù)革新。
電激勵(lì)為鎖相熱成像系統(tǒng)提供穩(wěn)定熱信號源。長波鎖相紅外熱成像系統(tǒng)工作原理
鎖相熱成像系統(tǒng)與電激勵(lì)結(jié)合,為電子產(chǎn)業(yè)的傳感器芯片檢測提供了可靠保障,確保傳感器芯片能夠滿足各領(lǐng)域?qū)Ω呔葯z測的需求。傳感器芯片是獲取外界信息的關(guān)鍵部件,廣泛應(yīng)用于工業(yè)自動(dòng)化、醫(yī)療診斷、環(huán)境監(jiān)測等領(lǐng)域,其精度和可靠性至關(guān)重要。傳感器芯片內(nèi)部的敏感元件、信號處理電路等若存在缺陷,如敏感元件的零點(diǎn)漂移、電路的噪聲過大等,會(huì)嚴(yán)重影響傳感器的檢測精度。通過對傳感器芯片施加電激勵(lì),使其處于工作狀態(tài),系統(tǒng)能夠檢測芯片表面的溫度變化,發(fā)現(xiàn)敏感區(qū)域的缺陷。例如,在檢測紅外溫度傳感器芯片時(shí),系統(tǒng)可以發(fā)現(xiàn)因敏感元件材料不均導(dǎo)致的溫度檢測偏差;在檢測壓力傳感器芯片時(shí),能夠識別出因應(yīng)變片粘貼不良導(dǎo)致的信號失真。通過篩選出無缺陷的傳感器芯片,提升了電子產(chǎn)業(yè)傳感器產(chǎn)品的質(zhì)量,滿足了各領(lǐng)域?qū)鞲衅鞯母呔刃枨蟆iL波鎖相紅外熱成像系統(tǒng)工作原理電激勵(lì)模塊是通過源表向被測物體施加周期性方波電信號,通過焦耳效應(yīng)使物體產(chǎn)生周期性的溫度波動(dòng)。
光束誘導(dǎo)電阻變化(OBIRCH)功能與微光顯微鏡(EMMI)技術(shù)常被集成于同一檢測系統(tǒng),合稱為光發(fā)射顯微鏡(PEM,PhotoEmissionMicroscope)。二者在原理與應(yīng)用上形成巧妙互補(bǔ),能夠協(xié)同應(yīng)對集成電路中絕大多數(shù)失效模式,大幅提升失效分析的全面性與效率。OBIRCH技術(shù)的獨(dú)特優(yōu)勢在于,即便失效點(diǎn)被金屬層覆蓋形成“熱點(diǎn)”,其仍能通過光束照射引發(fā)的電阻變化特性實(shí)現(xiàn)精細(xì)檢測——這恰好彌補(bǔ)了EMMI在金屬遮擋區(qū)域光信號捕捉受限的不足。
鎖相頻率越高,得到的空間分辨率則越高。然而,對于鎖相紅外熱成像系統(tǒng)來說,較高的頻率往往會(huì)降低待檢測的熱發(fā)射。這是許多 LIT系統(tǒng)的限制。RTTLIT系統(tǒng)通過提供一個(gè)獨(dú)特的系統(tǒng)架構(gòu)克服了這一限制,在該架構(gòu)中,可以在"無限"的時(shí)間內(nèi)累積更高頻率的 LIT 數(shù)據(jù)。數(shù)據(jù)采集持續(xù)延長,數(shù)據(jù)分辨率提高。系統(tǒng)采集數(shù)據(jù)的時(shí)間越長,靈敏度越高。當(dāng)試圖以極低的功率級采集數(shù)據(jù)或必須從弱故障模式中采集數(shù)據(jù)時(shí),鎖相紅外熱成像RTTLIT系統(tǒng)的這一特點(diǎn)尤其有價(jià)值。鎖相熱成像系統(tǒng)通過識別電激勵(lì)引發(fā)的周期性熱信號,可有效檢測材料內(nèi)部缺陷,其靈敏度遠(yuǎn)超傳統(tǒng)熱成像技術(shù)。
在半導(dǎo)體行業(yè)飛速發(fā)展的現(xiàn)在,芯片集成度不斷提升,器件結(jié)構(gòu)日益復(fù)雜,失效分析的難度也隨之大幅增加。傳統(tǒng)檢測設(shè)備往往難以兼顧微觀觀測與微弱信號捕捉,導(dǎo)致許多隱性缺陷成為 “漏網(wǎng)之魚”。蘇州致晟光電科技有限公司憑借自主研發(fā)實(shí)力,將熱紅外顯微鏡與鎖相紅外熱成像系統(tǒng)創(chuàng)造性地集成一體,推出 Thermal EMMI P 熱紅外顯微鏡系列檢測設(shè)備(搭載自主研發(fā)的 RTTLIT (實(shí)時(shí)瞬態(tài)鎖相紅外系統(tǒng)),為半導(dǎo)體的失效分析提供了全新的技術(shù)范式。
鎖相熱成像系統(tǒng)讓電激勵(lì)檢測更具實(shí)用價(jià)值。長波鎖相紅外熱成像系統(tǒng)工作原理
鎖相熱成像系統(tǒng)讓電激勵(lì)檢測數(shù)據(jù)更可靠。長波鎖相紅外熱成像系統(tǒng)工作原理
當(dāng)電子設(shè)備中的某個(gè)元件發(fā)生故障或異常時(shí),常常伴隨局部溫度升高。熱紅外顯微鏡通過高靈敏度的紅外探測器,能夠捕捉到極其微弱的熱輻射信號。這些探測器通常采用量子級聯(lián)激光器等先進(jìn)技術(shù),或其他高性能紅外傳感方案,具備寬溫區(qū)、高分辨率的成像能力。通過對熱輻射信號的精細(xì)探測與分析,熱紅外顯微鏡能夠?qū)㈦娮釉O(shè)備表面的溫度分布以高對比度的熱圖像形式呈現(xiàn),直觀展現(xiàn)熱點(diǎn)區(qū)域的位置、尺寸及溫度變化趨勢,從而幫助工程師快速鎖定潛在的故障點(diǎn),實(shí)現(xiàn)高效可靠的故障排查。長波鎖相紅外熱成像系統(tǒng)工作原理