熱紅外顯微鏡是一種融合紅外熱成像與顯微技術的精密檢測工具,通過捕捉物體表面及內部的熱輻射信號,實現(xiàn)微觀尺度下的溫度分布可視化分析。其**原理基于黑體輻射定律——任何溫度高于***零度的物體都會發(fā)射紅外電磁波,且溫度與輻射強度呈正相關,而顯微鏡系統(tǒng)則賦予其微米級的空間分辨率,可精細定位電子器件、材料界面等微觀結構中的異常熱點。
在電子工業(yè)中,熱紅外顯微鏡常用于半導體芯片的失效定位 —— 例如透過封裝材料檢測內部金屬層微短路、晶體管熱斑;在功率器件領域,可分析 IGBT 模塊的熱阻分布、SiC 器件的高溫可靠性;在 PCB 板級檢測中,能識別高密度線路的功耗異常區(qū),輔助散熱設計優(yōu)化。此外,材料科學領域也可用其研究納米材料的熱傳導特性,生物醫(yī)學中則可用于細胞層級的熱響應分析。 熱紅外顯微鏡可實時監(jiān)測電子設備運行中的熱變化,預防過熱故障 。半導體失效分析熱紅外顯微鏡應用
在國內失效分析設備領域,專注于原廠研發(fā)與生產(chǎn)的企業(yè)數(shù)量相對較少,尤其在熱紅外檢測這類高精度細分領域,具備自主技術積累的原廠更為稀缺。這一現(xiàn)狀既源于技術門檻 —— 需融合光學、紅外探測、信號處理等多學科技術,也受限于市場需求的專業(yè)化程度,導致多數(shù)企業(yè)傾向于代理或集成方案。
致晟光電正是國內少數(shù)深耕該領域的原廠之一。不同于單純的設備組裝,其從中樞技術迭代入手,在傳統(tǒng)熱發(fā)射顯微鏡基礎上進化出熱紅外顯微鏡,形成從光學系統(tǒng)設計、信號算法研發(fā)到整機制造的完整能力。這種原廠基因使其能深度理解國內半導體、材料等行業(yè)的失效分析需求,例如針對先進制程芯片的微小熱信號檢測、國產(chǎn)新材料的熱特性研究等場景,提供更貼合實際應用的設備與技術支持,成為本土失效分析領域不可忽視的自主力量。 半導體失效分析熱紅外顯微鏡應用熱紅外顯微鏡突破傳統(tǒng)限制,以超分辨率清晰呈現(xiàn)芯片內部熱分布細節(jié) 。
致晟光電的熱紅外顯微鏡(Thermal EMMI)系列 ——RTTLIT P10 實時瞬態(tài)鎖相熱分析系統(tǒng),搭載非制冷型熱紅外成像探測器,采用鎖相熱成像(Lock-In Thermography)技術,通過調制電信號大幅提升特征分辨率與檢測靈敏度,具備高靈敏度、高性價比的突出優(yōu)勢。該系統(tǒng)鎖相靈敏度可達 0.001℃,顯微分辨率可達 5μm,分析速度快且檢測精度高,重點應用于電路板失效分析領域,可多用于適配 PCB、PCBA、大尺寸主板、分立元器件、MLCC 等產(chǎn)品的維修檢測場景。
熱紅外是紅外光譜中波長介于 3–18 微米的譜段,其能量主要來自物體自身的熱輻射,而非對外界光源的反射。該波段可細分為中紅外(3–8?μm)、長波紅外(8–15?μm)和超遠紅外(15–18?μm),其熱感應本質源于分子熱振動產(chǎn)生的電磁波輻射,輻射強度與物體溫度正相關。在應用上,熱紅外利用大氣窗口(3–5?μm、8–14?μm)實現(xiàn)高精度的地表遙感監(jiān)測,并廣泛應用于熱成像、氣體探測等領域?,F(xiàn)代設備如 TIRS-2 和 O-PTIR 等,已將熱紅外技術的空間分辨率提升至納米級水平。
熱紅外顯微鏡通過分析熱輻射分布,評估芯片散熱設計的合理性 。
近年來,非制冷熱紅外顯微鏡價格呈下行趨勢。在技術進步層面,國內紅外焦平面陣列芯片技術不斷突破,像元間距縮小、陣列規(guī)模擴大,從早期的 17μm、384×288 發(fā)展到如今主流的 12μm 像元,1280 ×1 024、1920 × 1080 陣列規(guī)模實現(xiàn)量產(chǎn),如大立科技等企業(yè)推動技術升級,提升生產(chǎn)效率,降低單臺設備成本。同時,國產(chǎn)化進程加速,多家本土廠商崛起,如我司推出非制冷型鎖相紅外顯微鏡,打破進口壟斷格局,市場競爭加劇,促使產(chǎn)品價格更加親民。熱紅外顯微鏡在 3D 封裝檢測中,通過熱傳導分析確定內部失效層 。廠家熱紅外顯微鏡貨源充足
熱紅外顯微鏡在 SiC/GaN 功率器件檢測中,量化評估襯底界面熱阻分布。半導體失效分析熱紅外顯微鏡應用
熱紅外顯微鏡與光學顯微鏡雖同屬微觀觀測工具,但在原理、功能與應用場景上存在明顯差異,尤其在失效分析等專業(yè)領域各有側重。
從工作原理看,光學顯微鏡利用可見光(400-760nm 波長)的反射或透射成像,通過放大樣品的物理形態(tài)(如結構、顏色、紋理)呈現(xiàn)細節(jié),其主要是捕捉 “可見形態(tài)特征”;而熱紅外顯微鏡則聚焦 3-10μm 波長的紅外熱輻射,通過檢測樣品自身發(fā)射的熱量差異生成熱分布圖,本質是捕捉 “不可見的熱信號”。
在主要功能上,光學顯微鏡擅長觀察樣品的表面形貌、結構缺陷(如裂紋、變形),適合材料微觀結構分析、生物樣本觀察等;熱紅外顯微鏡則專注于微觀熱行為解析,能識別因電路缺陷、材料熱導差異等產(chǎn)生的溫度異常,即使是納米級的微小熱點(如半導體芯片的漏電區(qū)域)也能精確捕捉,這是光學顯微鏡無法實現(xiàn)的。
從適用場景來看,光學顯微鏡是通用型觀測工具,廣泛應用于基礎科研、教學等領域;而熱紅外顯微鏡更偏向專業(yè)細分場景,尤其在半導體失效分析中,可定位短路、虛焊等隱性缺陷引發(fā)的熱異常,在新材料研發(fā)中能分析不同組分的熱傳導特性,為解決 “熱相關問題” 提供關鍵依據(jù)。 半導體失效分析熱紅外顯微鏡應用